
Comparison theorems for the Dirac equation with spin-symmetric and pseudo-spin-symmetric

interactions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 J. Phys. A: Math. Theor. 43 195303

(http://iopscience.iop.org/1751-8121/43/19/195303)

Download details:

IP Address: 171.66.16.157

The article was downloaded on 03/06/2010 at 08:47

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/43/19
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 43 (2010) 195303 (11pp) doi:10.1088/1751-8113/43/19/195303

Comparison theorems for the Dirac equation with
spin-symmetric and pseudo-spin-symmetric
interactions

Richard L Hall1 and Özlem Yeşiltaş2
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Abstract
A single Dirac particle is bound in d dimensions by vector V (r) and scalar S(r)

central potentials. The spin-symmetric S = V and pseudo-spin-symmetric
S = −V cases are studied and it is shown that if two such potentials are ordered
V (1) � V (2), then corresponding discrete eigenvalues are all similarly ordered
E(1)

κν � E(2)
κν . This comparison theorem allows us to use envelope theory

to generate spectral approximations with the aid of known exact solutions,
such as those for Coulombic, harmonic-oscillator and Kratzer potentials. The
example of the log potential V (r) = v ln(r) is presented. Since V (r) is a
convex transformation of the soluble Coulomb potential, this leads to a compact
analytical formula for lower-bounds to the discrete spectrum. The resulting
ground-state lower-bound curve EL(v) is compared with an accurate graph
found by direct numerical integration.

PACS numbers: 03.65.Pm, 03.65.Ge, 03.65.−w

1. Introduction

Recently, there has been much interest in exact solutions of the Dirac or Klein–Gordon
equations with scalar and vector potentials of equal magnitude [1–6]. By the term ‘vector
potential’ we mean the time component V (r) of the energy-momentum four- vector; the scalar
potential S(r) is a term added to the mass. The spin and pseudo-spin symmetries in nuclear
physics [7, 8], which have been observed in the hadron, are used to explain aspects of deformed
nuclei. Spin symmetry occurs in the spectrum of a meson with one heavy quark and anti-
nucleon bound in a nucleus [9]. Pseudo-spin symmetry occurs in the spectrum of certain nuclei
[10]. Ginocchio showed that the Dirac Hamiltonian with scalar and vector harmonic-oscillator
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potentials admits both spin symmetry and U(3) symmetry when S = V , and it also admits
pseudo-spin symmetry and pseudo-U(3) symmetry when S = −V in the three-dimensional
(d = 3) case [11]. Exact solutions of the Dirac equation with a Coulomb-like tensor potential
are discussed in [12], under spin and pseudo-spin conditions.

For non-relativistic problems where the Hamiltonian is bounded below and its discrete
spectrum can be characterized variationally, the derivation of a comparison theorem of the
form

V (1) � V (2) ⇒ E(1) � E(2)

is almost immediate. The situation is not so clear a priori for relativistic problems where the
corresponding energy operator is not bounded below. In spite of this difficulty, it has been
shown [13–17] that relativistic comparison theorems are indeed possible, at least with respect
to vector potentials, that is to say, the time component V of a four- vector. To our knowledge,
no such results have been obtained for comparisons involving a scalar potential S (a variable
term added to the mass). In the present paper we derive comparison theorems for the Dirac
equation in the case of spin-symmetric problems S = V and for pseudo-spin-symmetric
problems S = −V .

We consider a single particle that is bounded by an attractive central vector and scalar
potentials, respectively V and S, in d � 1 spatial dimensions and obeys the Dirac equation.
For central potentials in d dimensions the Dirac equation can be written [18] in natural units
h̄ = c = 1 as

i
∂�

∂t
= H�, where H =

d∑
s=1

αsps + (m + S)β + V, (1)

where m is the mass of the particle, V and S are the spherically symmetric vector and scalar
potentials respectively and {αs} and β are Dirac matrices, which satisfy anti-commutation
relations; the identity matrix is implied after the vector potential V. For stationary states,
algebraic calculations in a suitable basis lead to a pair of first-order linear differential equations
in two radial functions {ψ1(r), ψ2(r)}, where r = ‖r‖. For d > 1, these functions vanish at
r = 0, and, for bound states, they may be normalized by the relation

(ψ1, ψ1) + (ψ2, ψ2) =
∫ ∞

0

(
ψ2

1 (r) + ψ2
2 (r)

)
dr = 1. (2)

We use inner products without the radial measure factor r(d−1) because the factor r
(d−1)

2 is
already built in to each radial function. Thus, the radial functions vanish at r = 0 and satisfy
the coupled equations

Eψ1 = (V + m + S)ψ1 + (−∂ + kd/r)ψ2 (3)

Eψ2 = (∂ + kd/r)ψ1 + (V − m − S)ψ2, (4)

where k1 = 0, kd = τ
(
j + d−2

2

)
, d > 1, τ = ±1, and the symbol ∂ represents the operator

∂/∂r . We note that the variable τ is sometimes written as ω, as, for example, in the book by
Messiah [19]3, and the radial functions are often written as ψ1 = G and ψ2 = F, as in the
book by Greiner [20]4. We shall assume that the potentials V and S are such that there are
some discrete eigenvalues Ekdν and that equations (3) and (4) are the eigenequations for the
corresponding radial eigenstates. Here ν is the number of nodes in the radial wavefunction

3 The Dirac equation for central fields is discussed on page 928.
4 The Dirac equation for the Coulomb central potential is discussed on page 178.
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(of equation (12) below) for a given kd. In this paper we shall present the problem explicitly
for the cases d > 1. Similar arguments go through for the case d = 1: in this case
k1 = 0, the states can be classified as even or odd, and the normalization (2) becomes instead∫ ∞
−∞

(
ψ2

1 (x) + ψ2
2 (x)

)
dx = 1.

The principal concern of the present paper is with two special cases, namely spin-
symmetric problems, for which S = V , and pseudo-spin-symmetric problems, for which
S = −V . In each class of problems, therefore, there is just one potential function, V: it is
with respect to this potential that we shall derive comparison theorems. We shall first treat the
two cases separately, and then, for the purpose of determining the discrete spectrum, put them
together in a single formulation.

1.1. Spin-symmetric problems S = V

In this case (3) and (4) become

ψ ′
1 +

kd

r
ψ1 = (m + E)ψ2 (5)

ψ ′
2 − kd

r
ψ2 = (m + 2V − E)ψ1. (6)

By differentiation and substitution we obtain the following Schrödinger-like equation:

−ψ ′′
1 +

(
kd(kd + 1)

r2
+ 2(E + m)V

)
ψ1 = −(m2 − E2)ψ1. (7)

Although the radial function ψ1, which must be L2 because of (2), is not separately normalized,
eigenequation (7) does determine the discrete eigenvalue E. This will be illustrated explicitly
in the next section where we shall discuss some exact solutions. However, we note that (7)
alone is not sufficient to derive the comparison theorem; for this it is still necessary to use the
original Dirac equations.

1.2. Pseudo-spin-symmetric problems S = −V

In this case (3) and (4) become

ψ ′
1 +

kd

r
ψ1 = (m + E − 2V )ψ2 (8)

ψ ′
2 − kd

r
ψ2 = (m − E)ψ1. (9)

Again, by differentiation and substitution we obtain a Schrödinger equation, namely

−ψ ′′
2 +

(
kd(kd − 1)

r2
+ 2(E − m)V

)
ψ2 = −(m2 − E2)ψ2. (10)

1.3. Combined eigenequation

By using the following parametrization:

κ = skd = sτ

(
j +

d − 2

2

)
, μ = sm, s = ±1, (11)

we may write the eigenequation for both cases as

−ψ ′′ +

(
κ(κ + 1)

r2
+ 2(E + μ)V

)
ψ = −(μ2 − E2)ψ, (12)

3
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where ψ is assumed to be square integrable on [0,∞), and E = Eκν is a discrete eigenvalue
corresponding to a radial eigenfunction with ν = 0, 1, 2, . . . nodes.

1.4. Principal result

The principal result of this paper is the following theorem.

Theorem.

V (1) � V (2) ⇒ E(1)
κν � E(2)

κν . (13)

We shall prove this theorem in section 3. In section 2 below we first derive some exact
spectral formulae for harmonic-oscillator, coulombic, Kratzer potentials and log potentials. In
section 4 we outline the envelope method which provides energy bounds whenever a
comparison theorem is available and the given potential can be written as a transformation
V (r) = g(h(r)) of a soluble potential h(r), where the transformation function g(h) has
definite convexity. In section 5 we consider the log potential V (r) = v ln(r) which is a convex
transformation of the Coulomb potential h(r) = −1/r . We show that envelope theory can
use the exact Coulomb solution and the comparison theorem to generate an implicit analytical
formula expressing the dependence of each eigenvalue on the coupling parameter v. The lower
bound curve EL(v) is compared to an accurate graph obtained by scaling and direct numerical
integration.

2. Some exact eigenvalues

We can obtain exact solutions by comparing the general Dirac eigenequation (12) for the
classes of problems considered with the following generic radial Schrödinger equation:

−ψ ′′ +

(
L(L + 1)

r2
+ vf (r)

)
ψ = Eψ = FνL(v)ψ, (14)

where v > 0 is the coupling parameter for an attractive central potential with shape f (r), L is
a generalized angular momentum quantum number that is not necessarily integral and FνL(v)

describes how the eigenvalue corresponding to a radial eigenfunction with ν nodes depends
on the coupling. From the relation κ(κ + 1) = L(L + 1) we extract the following formula for
L:

L =
∣∣∣∣κ +

1

2

∣∣∣∣ − 1

2
=

∣∣∣∣sτ
(

j +
d − 2

2

)
+

1

2

∣∣∣∣ − 1

2
, s = ±1. (15)

We now present six illustrations.

2.1. Harmonic-oscillator: V (r) = vr2

From equation (14) in this case we have

E = FνL(v) = P v
1
2 , P = (4ν + 2L + 3). (16)

If we apply this to eigenequation (12) for the corresponding Dirac problem, we obtain

E2 − μ2 = (2v(μ + E))
1
2 P, μ = sm = ±m. (17)

Thus, we must have v(E + μ) > 0, and we conclude |E| > m. Numerical values are easily
obtained as the solutions to

(E2 − m2)|E − μ| = 4P 2|v| (18)

satisfying |E| > m.

4
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2.2. The linear potential: V (r) = vr

For the linear potential we have by equation (14) and a scaling argument that

E = FνL(v) = P v
2
3 , (19)

where the Schrödinger eigenvalues P = FνL(1) for unit coupling v = 1 must be determined
numerically; these are all positive. For example, if d = 3, τ = s = 1 and j = 1

2 , then from
equation (15), L = 1; thus, P = F01(1) is the bottom of the spectrum of −∂2 + 2/r2 + r , that
is to say, P ≈ 3.361 2545. If we apply this to eigenequation (12) for the corresponding Dirac
problem, we obtain

E2 − μ2 = P(2v(μ + E))
2
3 , μ = sm = ±m. (20)

Thus, we must have v(E + μ) > 0, and we conclude |E| > m. Numerical values for the Dirac
energy E are then given by solutions to

(E2 − m2)(E − μ)2 = 4v2P 3. (21)

satisfying |E| > m.

2.3. Coulomb potential: V (r) = −v/r

We proceed in a similar way as for the oscillator problem. In the Coulomb case we have

E = FνL(v) = − v2

4P 2
, P = ν + 1 + L. (22)

If we apply this to eigenequation (12) for the corresponding Dirac problem, we obtain

E2 − μ2 = −v2(μ + E)2

P 2
. (23)

It is immediately clear that E2 < μ2 = m2, that is to say, the discrete eigenvalues satisfy
−m < E < m. Moreover, we conclude that for spin-symmetric problems (μ = m), we have
v > 0, but for pseudo-spin-symmetric problems (μ = −m), the coupling must be negative,
v < 0. We note for future reference that in both Coulomb cases

vμ > 0. (24)

For the pure Coulomb problem we have the following explicit spectral formula:

E = μ

(
1 − v2

P 2

)
(
1 + v2

P 2

) . (25)

For the Coulomb potential we now briefly discuss the behavior of ψ1 and ψ2, as solutions of
(7) and (10), near the origin. The solutions of the combined equation (12) are given as

ψ(r) = c rL+1e−
√

μ2−E2 rL2L+1
ν (2

√
μ2 − E2 r), (26)

where c is a normalization constant, La
ν(x) are Laguerre polynomials and the parameter L,

which satisfies L(L + 1) = κ(κ + 1), is given explicitly by equation (15). The small-r
asymptotic behavior of the wavefunction for the corresponding semirelativistic problem is
discussed in [21].

5
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2.4. Shifted Coulomb potential: V (r) = −v/r + c

We now add a constant term c and re-solve, obtaining, first from equation (12),

E2 − μ2 − 2c(μ + E) = −v2(μ + E)2

P 2
, (27)

where P = ν + L + 1. Thus, we have for the shifted Coulomb problem

E = μ

(
1 − v2

P 2

)
(
1 + v2

P 2

) +
2c(

1 + v2

P 2

) = −μ +
2(μ + c)(
1 + v2

P 2

) . (28)

We note that this result is consistent with equation (52) of [22]. From equation (12) in this
case, it is clear that, for the existence of discrete eigenvalues, we must have v(E + μ) > 0.
From this inequality and equation (28) we conclude that

v(c + μ) > 0. (29)

Thus, unlike for the Dirac equation with a Coulombic vector potential and a constant scalar
potential, where the Coulomb coupling must not be too large (the Z < 137 rule for atoms), here
the magnitude |v| of the Coulomb coupling may be chosen as large as we please. Moreover,
unlike for any Schrödinger problem, where an added potential constant term c may have any
desired value, here c is restricted by equation (29).

2.5. The Kratzer potential: V (r) = a/r2 − v/r + c

The Kratzer potential [23–29] comprises a shifted Coulomb potential with an added centrifugal
term. The corresponding eigenvalues are given implicitly by the same formula (27) that we
derived above, but now the parameter P depends on E. The new effective L parameter is
determined by

κ(κ + 1) + 2a(E + μ) = L(L + 1).

Since P = ν + 1 + L, we can obtain (for a �= 0) a second expression for E given by

E = 1

2a

[(
P − 1

2
− ν

)2

−
(

κ +
1

2

)2
]

− μ. (30)

Thus, by equating formulae (28) and (30) we obtain a quartic equation whose solution yields
the value of P which then, in turn, determines E via (28) or (30). We can also use P from (28)
which is

P = v

√
μ + E

2c + μ − E
, (31)

to obtain an eigenvalue equation which is equivalent to (30)

v(μ + E) =
⎛
⎝ν +

1

2
+

√(
κ +

1

2

)2

+ 2a(μ + E)

⎞
⎠ × (2c(μ + E) + μ2 − E2)

1
2 . (32)

We note that this result is consistent with equations (40) and (52) of [22]. If c = 0, then the
limit to Coulomb coupling v = 0 yields from (28) E = μ = sm = ±m, whatever value we
choose for the centrifugal parameter a. We note that this conclusion clearly contradicts the
spectral claims made in section 5.3.2 of [22]; we find no discrete spectrum if the Coulomb
coupling is zero, that is to say when v = 0.

6
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Table 1. The four spectral regions for the log potential V (r) = v ln(r). When E = 0,

u = v(E + μ) = vμ = u1.

μ = m μ = −m

v > 0 −m < E < u1/v − m m < E < m + u1/v

v < 0 −u1/|v| − m < E < −m −u1/|v| + m < E < m

2.6. The log potential: V (r) = v ln(r)

We now let the potential shape be f (r) = ln(r) in equation (14). If we let the eigenvalue with
coupling v = 1 and given ν and L be

e(1) = eνL(1) = FνL(1),

then the general eigenvalue with coupling v > 0 is given by

FνL(v) = e(1)v − 1
2v ln(v). (33)

We see this by the following scaling argument. The Schrödinger Hamiltonian has the form
H = −� + v ln(r). By scaling the radial variable r → rσ, where σ > 0 is fixed,
we merely describe H in a different way, and we obtain the spectrally equivalent operator
H → 1

σ 2 � + v ln(rσ ). Thus, the eigenequation becomes[
−

(
1

σ 2

)
� + v ln(rσ )

]
ψ = e(v)ψ, (34)

equivalently,

[−� + σ 2v ln(r)]ψ = σ 2(e(v) − v ln(σ ))ψ. (35)

By choosing the scale so that σ 2v = 1, the eigenvalue on the right-hand side of (35) must equal
e(1). This establishes equation (33). If we now apply this formula to the Dirac combined
eigenequation (12), we find that the Dirac energy E = EνL is given by the following implicit
formula:

E = μ + v[2e(1) − ln(2) − ln(v(μ + E))]. (36)

For later reference we note that the bottom of the spectrum, for arbitrary v (of the appropriate
sign), requires the single Schrödinger eigenvalue e(1) = F01(1) ≈ 1.641 1353. From
equation (12) we see that it is always necessary that u ≡ v(μ + E) > 0. This parameter
has the upper bound u < u1, where u1 corresponds to E = 0: if u > u1, E becomes complex.
We have from equation (12) with E = 0 for this case

−m2 = u1(2eνL − ln(2)) − u1 ln(u1). (37)

For the ground state with μ = m = 1, d = 3 and v > 0, we have κ = L = 1, e01 ≈ 1.641 1353
and u1 = v ≈ 14.283 89. More generally, depending on the signs of v and μ = ±m, we may
identify four spectral regions; these are summarized in table 1.

3. Comparison theorem

We establish the comparison theorem in two steps, the first establishes a differential result,
as we did for pure vector potentials in [15, 16], and the second extends this to a general
comparison theorem, as in [17]. We therefore begin by considering spin-symmetric or pseudo-
spin-symmetric problems in which V(r, a) depends on a parameter a and it is supposed that

7
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∂V/∂a � 0. We shall prove below that this assumption implies E′(a) � 0 for each discrete
eigenvalue. If we now define the one-parameter family of potentials by

V (r, a) = V (1)(r) + a(V (2)(r) − V (1)(r)), a ∈ [0, 1], (38)

then V (2)(r) � V (1)(r) implies that V(r, a) is monotone increasing in the parameter a. Thus,
E′(a) � 0 implies E(2) ≡ E(1) � E(0) ≡ E(1), whose result proves the theorem. It remains
to prove the monotonicity of E(a).

3.1. Proof that ∂V/∂a � 0 ⇒ E′(a) � 0

If the normalization integral (2) is differentiated partially with respect to a, and we denote
∂ψ/∂a = ψa for each wavefunction component, we obtain the orthogonality relation

(ψ1a, ψ1) + (ψ2a, ψ2) = 0. (39)

Now we differentiate (3) and (4) with respect to a to obtain

E′(a)ψ1 + E(a)ψ1a = (Va + Sa)ψ1 + (V + m + S)ψ1a + (−∂ + kd/r)ψ2a, (40)

and

E′(a)ψ2 + E(a)ψ2a = (Va − Sa)ψ2 + (V − m − S)ψ2a + (∂ + kd/r)ψ1a. (41)

The linear combination (40)ψ1 + (41)ψ2 of these two equations may be written as

E′(a)[(ψ1, ψ1) + (ψ2, ψ2)] = (ψ1, (Sa + Va)ψ1) + (ψ2, (Va − Sa)ψ2) + W, (42)

where

W = (ψ2, (∂ + kd/r)ψ1a) − (ψ1, (∂ − kd/r)ψ2a)

− ((m + E(a) + S − V )ψ2a, ψ2) + ((m − E(a) + S + V )ψ1a, ψ1). (43)

We have again used ∂ to denote the differential operator ∂ = ∂/∂r . The boundary conditions
imply the anti-symmetric relation

(ψ, ∂φ) = −(∂ψ, φ). (44)

If (44) is used in (43), it becomes

W = (ψ1a, [(m − E(a) + S + V )ψ1 + (−∂ + kd/r)ψ2])

+ (ψ2a, [−(m + E(a) + S − V )ψ2 − (−∂ − kd/r)ψ1]). (45)

From equations (3) and (4) it is clear that W = 0. Thus, the expression for E′(a) becomes in
the spin-symmetric case S = V

E′(a)[(ψ1, ψ1) + (ψ2, ψ2)] = 2

(
ψ1,

∂V

∂a
ψ1

)
, (46)

and in the pseudo-spin-symmetric case S = −V

E′(a)[(ψ1, ψ1) + (ψ2, ψ2)] = 2

(
ψ2,

∂V

∂a
ψ2

)
. (47)

Thus, the theorem is established since, in either case, if ∂V/∂a has a definite sign, then E′(a)

necessarily has the same sign.
The Coulomb problem of section 2.2 provides an illustration if we let a = v. We have

for the shifted Coulomb potential V (r) = −v/r + c that ∂V/∂v = −1/r < 0. Meanwhile,
we obtain from the corresponding spectral formula (27)

E′(v) = − 4(μ + c)v

P 2(1 + v2/P 2)2
. (48)

Since, from equation (29), (μ + c)v > 0 for the shifted Coulomb problem, we conclude
E′(v) < 0, as predicted by the comparison theorem.

8
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4. Envelope theory

Envelope theory [30–33] is based on a simple geometrical idea. If the potential V (r) is written
as a smooth transformation V (r) = g(h(r)) of a soluble potential h(r), and the transformation
function g has definite convexity, then the tangents to g(h), all of the form bh(r)+c, lie entirely
above or below V (r). If the eigenvalue problems satisfy a comparison theorem, then these
shifted h-potentials provide upper or lower spectral bounds. The envelope method consists of
finding the best energy bound from one of these families. Suppose, for example, that g(h) is a
convex function (g′′(h) � 0); then in this case we obtain a family of lower potentials given by

V (r) � V (t)(r) = b(t)h(r) + c(t), (49)

where

b(t) = g′(h(t)), c(t) = g(h(t)) − h(t)g′(h(t)), (50)

and r = t is the point of contact between the tangent bh(r) + c and the potential V (r).

5. The log potential

We now consider the log potential V (r) = v ln(r), where v is a coupling parameter: v is
positive in the spin-symmetric case and negative in the pseudo-spin-symmetric case. For a
soluble envelope basis we choose the Coulomb potential h(r) = −1/r . Thus, for the log
potential shape we have

f (r) = ln(r) = g(h(r)) = − ln(−h(r)). (51)

It follows that g′(h) = −1/h > 0 and g′′(h) = 1/h2 > 0; that is to say, g is monotone
increasing and convex. Equation (50) then provides us with the b(t) and c(t) coefficients:
b(t) = t and c(t) = 1 + ln(t). The potential-shape inequality in this case therefore becomes

ln(r) = f (r) � f (t)(r) = − t

r
+ (1 + ln(t)). (52)

In view of the comparison theorem and the exact eigenvalue formula (28) for the shifted
Coulomb potential, we are now able to construct spectral bounds. Since the direction of the
full potential inequality, including the coupling, now depends on the sign of the coupling v

parameter: if v > 0, we obtain a lower bound; if v < 0, envelope theory generates an upper
bound. The bound, once established, may then be optimized over t. For our illustration we
take v > 0 for the spin-symmetric case μ = m, and we find

EL = max
t

[
μ

(
1 − (vt)2

P 2

)
(
1 + (vt)2

P 2

) +
2v(1 + ln(t))(

1 + (vt)2

P 2

)
]

. (53)

It is clear from this equation that as v → 0, EL → μ and as v → ∞, EL → −μ. By working
with a new optimization parameter q = (vt/P )2, we can rewrite equation (53) in the form

EL = max
q

[
μ

(
1 − q

1 + q

)
+

2v(1 + ln(P/v)) + v ln(q)

1 + q

]
. (54)

After some algebra, we find that the critical value of q satisfies q = v/(μ+E), and, moreover,
it is possible to obtain the following implicit analytical formula for all the eigenvalues:

EL = m + v[1 + 2 ln(P ) − ln(v(m + EL))], (55)

where P = 1 + ν + L and L is given by equation (15). In figure 1 we exhibit the energy curve
EL(v) for the spin-symmetric ground state (P = 2) for μ = m = 1, and in dimension d = 3,
along with a corresponding accurate curve E(v) obtained from equation (36).
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Figure 1. Ground-state spin-symmetric energy E(v) for the potential V (r) = v ln(r), with m = 1,
d = 3 and κ = L = 1. The figure shows the envelope lower bound EL provided by equation (55)
and accurate numerical values E given by equation (36) with e(1) = 1.641 1353.

6. Conclusion

Comparison theorems immediately generate spectral approximations. Thus, spectral data
from one problem yield spectral estimates for another. Until recently, this kind of reasoning
was not expected to be valid for relativistic systems since their discrete spectra are not
easily characterized variationally. It was then discovered that comparison theorems could
be established without recourse to variational arguments. This has led to some comparison
theorems for relativistic systems with different vector potentials. In this paper we have
shown that spin-symmetric and pseudo-spin-symmetric Dirac problems also admit comparison
theorems. This in turn allows us to use envelope theory to estimate the spectra of such systems.
For the log potential we are thus able to generate a spectral formulae which provide energy
bounds for each discrete eigenvalue.
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[22] Aydoğdu O and Sever R 2009 Annu. Phys. 325 373
[23] Kratzer A 1920 Z. Phys. 3 289
[24] Landau L D and Lifshitz E M 1977 Quantum Mechanics (Non-Relativistic Theory) (Oxford: Pergamon)
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